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Abstract

In the past decade, immune checkpoint inhibitors (ICIs) 
have dramatically changed cancer treatment, significantly 
improving outcomes for patients with various malignancies. 
Nonetheless, their widespread application has resulted in 
a rise in immune-related adverse events due to excessive 
immune activation, including immune-mediated hepatotox-
icity (IMH). IMH can cause serious complications and even 
death, underscoring the need for early prediction and in-
tervention. This review outlines the current understanding 
of risk factors and predictive biomarkers for IMH in cancer 
patients undergoing ICI therapy, with risk factors divided 
into patient-associated, tumor-associated, and agent-asso-
ciated categories. Higher IMH risk is related to female sex, 
younger age, extreme BMI, Asian ethnicity, and chronic liv-
er disease. Cancer type, prior ICI treatment, dual ICI com-
bination therapy, and the concurrent use of chemotherapy, 
targeted agents, or other hepatotoxic drugs (e.g., acetami-
nophen, statins) also increase the risk of IMH. Potential pre-
dictive biomarkers encompass circulating blood cells, serum 
proteins, autoantibodies, cytokines, gene profiles, and the 
gut microbiome. Despite promising findings, the predictive 
value of these biomarkers remains inconsistent, and no de-
finitive biomarker has been established for routine clinical 
use. Large-scale prospective studies are essential to verify 
the predictive value of these biomarkers and facilitate their 
integration into clinical practice, thereby providing deeper 
insights into the early identification and individualized man-
agement of IMH during ICI therapy.
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Introduction
Immune checkpoint inhibitors (ICIs) have revolutionized 
the therapeutic landscape of numerous advanced solid and 
haematological malignancies over the past decade, emerg-
ing as a cornerstone of modern cancer therapy.1 ICIs are 
monoclonal antibodies targeting inhibitory receptors on the 
surface of T cells or tumor cells, primarily including cytotoxic 
T-lymphocyte-associated antigen-4 (CTLA-4) inhibitors (i.e., 
ipilimumab), programmed death protein 1 (PD-1) inhibi-
tors (i.e., nivolumab and pembrolizumab), and programmed 
death protein ligand 1 (PD-L1) inhibitors (i.e., atezolizumab, 
durvalumab).2 By blocking these inhibitory pathways, ICIs 
can activate T-cell responses and thereby amplify antitumor 
activity. Currently, ICIs have demonstrated remarkable ef-
ficacy in a broad spectrum of cancers, including melanoma, 
non-small cell lung cancer (NSCLC), renal cell carcinoma, 
hepatocellular carcinoma (HCC), and esophageal squamous-
cell carcinoma.3–7 Compared to traditional chemotherapy, 
ICIs offer superior efficacy, enhanced tolerability, and im-
proved prognosis for patients with advanced malignancies.8 
In recent years, ICIs have garnered global attention as a 
revolutionary approach in cancer treatment (Table 1).

However, the widespread adoption of ICIs for advanced 
cancers has been accompanied by unexpected immunological 
and inflammatory complications, known as immune-related 
adverse events (irAEs), arising from an overactive immune 
response that targets normal tissues or organs.9 These irAEs 
can influence a range of organ systems, particularly the skin, 
gastrointestinal tract, endocrine glands, and liver.10 Among 
these, immune-mediated hepatotoxicity (IMH), a liver-relat-
ed irAE, has represented a clinically significant challenge.11 
IMH typically manifests as asymptomatic elevations in as-
partate aminotransferase (AST), alanine aminotransferase 
(ALT), and/or alkaline phosphatase (ALP), with reported in-
cidences ranging from 1% to 15% in clinical trials.12,13 Al-
though most IMH cases are relatively mild, sometimes they 
can be life-threatening, leading to severe hepatitis, liver fail-
ure, and even fatalities, necessitating treatment discontinua-
tion.14,15 According to data from the World Health Organiza-
tion, 20.2% (124 out of 613) of fatal ICI-related toxic events 
were attributed to IMH, highlighting the critical need for early 
detection and effective management.16

Currently, the precise mechanisms of IMH development 
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are not fully elucidated, with proposed roles for T-helper cell 
expansion, monocyte/macrophage activation, and regulatory 
T (Treg)-cell depletion,17 making therapy targeting specific 
molecular pathways challenging. Consequently, management 
strategies for IMH primarily rely on expert consensus guide-
lines derived from clinical trial protocols, which recommend 
discontinuing ICIs and initiating glucocorticoids or immuno-
suppressants.18,19 However, this reactive approach, which is 
often initiated only after toxicity manifests, fails to prevent 
the occurrence of severe IMH and is ineffective in patients 
who show a poor response or resistance to corticosteroid 
therapy. More critically, data on risk factors and biomarkers 
of IMH are limited, resulting in the lack of reliable predictive 
tools that can accurately identify high-risk patients before 
treatment initiation, which eventually complicates treatment 
decisions for clinicians, potentially causing treatment delays 

or permanent discontinuation. Therefore, identifying the risk 
factors and biomarkers of IMH in patients receiving ICI ther-
apy is urgently needed. This information will allow clinicians 
to identify high-risk individuals early, optimize immunother-
apy regimens, and initiate timely interventions, ultimately 
mitigating the occurrence of IMH.

Evidence suggests that several clinical risk factors, such 
as female sex, pre-existing non-alcoholic fatty liver disease 
(NAFLD), and the use of combination ICIs (e.g., anti-CTLA-4 
plus anti-PD-1/PD-L1), are associated with an elevated risk 
of IMH, which allows for early identification of high-risk 
populations.20–22 Concurrently, emerging investigations into 
potential biomarkers, including circulating blood cells, au-
toantibodies, cytokines, specific immune cell subsets (e.g., 
CD8+ T cells), and genomic signatures, have demonstrated 
promise for risk stratification and early intervention of irAEs, 

Table 1.  Immune checkpoint inhibitors and their indications

Target Drug Indications Time to market

CTLA-4 Ipilimumaba,b Melanoma, RCC, MSI-H or dMMR CRC, HCC, NSCLC, MPM, ESCC 2011

PD-1 Nivolumaba,b Melanoma, NSCLC, MPM, RCC, cHL, HNSCC, UC, MSI-H or  
dMMR CRC, HCC, ESCC, GC/GEJC/EAC

2014

Pembrolizumaba,b Melanoma, NSCLC, HNSCC, cHL, PMBCL, UC, MSI-H or dMMR 
CRC, ESCC, HCC, MCC, RCC, TNBC, BTC, CC, EC, GC/GEJC/EAC  
TMB-H solid tumors, cSCC

2014

Cemiplimaba cSCC, BCC, NSCLC 2018

Toripalimaba,b Melanoma, NPC, UC, NSCLC, SCLC, RCC, ESCC, TNBC 2018

Sintilimaba,b cHL, NSCLC, HCC, ESCC, GC/GEJC/EAC 2018

Camrelizumaba,b cHL, HCC, NSCLC, ESCC, NPC 2019

Tislelizumaba,b cHL, UC, NSCLC, SCLC, HCC, MSI-H or dMMR solid tumor,  
ESCC, NPC, GC/GEJC/EAC

2019

Penpulimabb cHL, NSCLC 2021

Zimberelimabb cHL 2021

Serplulimabb MSI-H or dMMR solid tumor, NSCLC, SCLC, ESCC 2022

Pucotenlimabb Melanoma, MSI-H or dMMR solid tumor 2022

Enlonstobartb CC 2024

PD-L1 Atezolizumaba,b Melanoma, UC, NSCLC, SCLC, HCC 2017

Avelumaba MCC, UC, RCC 2017

Durvalumaba,b NSCLC, SCLC, HCC, BTC, dMRR EC 2017

Envafolimabb MSI-H or dMMR CRC 2021

Sugemalimabb NSCLC, ENKTL, ESCC, GC/GEJC/EAC 2021

Adebrelimabb SCLC 2023

Socazolimabb CC 2023

Benmelstobartb SCLC 2024

PD-L1/CTLA-4 Cadonilimabb CC 2022

Iparomlimab and 
tuvonralimabb

CC 2024

PD-1/VEGF Ivonescimabb NSCLC 2024

aApproved by the U.S. Food and Drug Administration (FDA). bApproved by the National Medical Products Administration (China). CTLA4, cytotoxic T-lymphocyte antigen 4; 
PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1; VEGF, vascular endothelial growth factor; RCC, renal cell carcinoma; MSI-H, microsatellite instability-
high; dMMR, deficient mismatch repair; CRC, colorectal cancer; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; MPM, malignant pleural mesothelioma; 
ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; GEJC, gastroesophageal junction cancer; EAC, esophageal adenocarcinoma; cHL, classical Hodgkin lym-
phoma; UC, urothelial carcinoma; HNSCC, head and neck squamous cell cancer; SCLC, small cell lung cancer; PMBCL, primary mediastinal large B-cell lymphoma; MCC, 
Merkel cell carcinoma; TMB-H, tumor mutational burden-high; TNBC, triple-negative breast cancer; BTC, biliary tract carcinoma; CC, cervical cancer; EC, endometrial 
carcinoma; cSCC, cutaneous squamous cell carcinoma; BCC, basal cell carcinoma; NPC, nasopharyngeal carcinoma; ENKTL, extranodal natural killer/T-cell lymphoma.
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suggesting their potential as markers for IMH prediction.23,24 
However, the available evidence on the risk factors and bio-
markers that predict IMH occurrence remains limited, and 
most studies are retrospective, not specifically focused on 
IMH. Therefore, this review aims to comprehensively synthe-
size the current landscape of the risk factors and emerging 
biomarkers associated with IMH during ICI therapy, which 
will provide promise for early identification and individualized 
management of IMH, thereby promoting the safety and ef-
ficacy of tumor immunotherapy.

Potential mechanism of IMH
As previously described, the central mechanism by which 
ICIs exert anti-tumor effects is the activation of cytotoxic T 
cells (CTLs) by inhibiting the CTLA-4 and PD-1/PD-L1 sign-
aling pathways. Although these two pathways function as 
negative regulators of T-cell activation, they have different 
roles in immune regulation. CTLA-4 functions primarily dur-
ing the initial priming phase of T-cell activation within sec-

ondary lymphoid organs, such as lymph nodes.25,26 On ac-
tivated T cells and Treg cells, CTLA-4 competitively binds to 
the co-stimulatory molecules B7-1 (CD80) and B7-2 (CD86) 
on antigen-presenting cells (APCs) with a higher affinity than 
the activating receptor CD28, thereby inhibiting the initial 
clonal expansion and proliferation of T cells (Fig. 1A). CTLA-
4 inhibitors block this interaction, which prevents inhibitory 
signaling and enhances T-cell activation by promoting CD28-
mediated co-stimulation. In contrast, the PD-1 pathway is 
primarily engaged during the effector phase within peripheral 
tissues and the tumor microenvironment. PD-1 is expressed 
on activated T cells and binds to its ligand PD-L1, which is 
often upregulated on tumor cells and various host cells.26,27 
This engagement suppresses downstream T-cell receptor and 
CD28 signaling cascades, leading to the functional impair-
ment or exhaustion of T-cell effector functions and facilitating 
tumor immune evasion (Fig. 1B). PD-1/PD-L1 inhibitors also 
block this interaction, reinvigorating exhausted T cells and 
restoring their cytotoxic and proliferative potential. This fun-
damental mechanistic divergence underpins the differential 

Fig. 1.  Mechanisms of ICI-mediated hepatotoxicity. (A) CTLA-4 inhibitors activate T cells at the priming phase. (B) PD-(L)1 inhibitors activate T cells to exhibit 
an anti-tumor effect in the effector phase. ICIs can disrupt the immune-tolerant environment in the liver. (C) ICIs reactivate exhausted CTLs, which further upregulate 
the proliferation of IFN-γ, granzyme B, and granzyme lysin, and kill tumor cells. In this process, tumor cell lysis releases various self-antigens or neoantigens, which are 
recognized and cross-presented by APCs, attacking the body’s own normal liver tissues. (D) Expansion of T helper cells (e.g., Th1, Th17) increases pro-inflammatory 
cytokines, and Treg reduction leads to a decrease in anti-inflammatory cytokines. (E) Activated B cells crosstalk with CD8+ T cells through costimulatory signaling 
and induce an increase in CD21lo subtype, plasmablasts, and autoantibody formation. (F) Crosstalk between activated CD8+ T cells and innate immune cells such as 
macrophages via inflammatory cytokines leads to NLRP3 inflammasome activation and hepatocyte apoptosis. The above processes are involved in the pathophysiologic 
mechanism of ICI-mediated hepatotoxicity. Created with Figdraw 2.0. CTLA4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death-1; PD-L1, programmed 
death-ligand 1; APC, antigen-presenting cells; MHC, major histocompatibility complex; TCR, T cell receptor; IFN-γ, interferon-γ; CTL, cytotoxic T cells; IL, interleukin; 
TNF-α, tumor necrosis factor-α; FoxP3, Forkhead box protein P3; Treg, Treg cell; TGF-β, transforming growth factor-β; NLRP3, Nod-like receptor protein 3.
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immune effects observed with ICI therapies: CTLA-4 block-
ade predominantly enhances early CD4+ T-cell clonal expan-
sion and promotes T-cell trafficking to tumor sites, whereas 
PD-1/PD-L1 blockade primarily reverses the exhausted CD8+ 
T cells within tissues.26 Consequently, this complementary 
biology provides a rationale for the use of both monotherapy 
and combination regimens to achieve synergistic anti-tumor 
immunity.

While the precise mechanisms driving IMH following ICI 
therapy are not yet fully understood, the liver’s unique im-
munological properties are recognized as central to its 
pathophysiology. Under homeostatic conditions, the liver 
maintains a state of immunotolerance achieved through the 
anti-inflammatory functions of both parenchymal and non-
parenchymal cells, as well as the constitutive expression of 
immune checkpoint molecules by various cell subsets.17 No-
tably, a cornerstone of liver immunotolerance involves PD-
L1 expressed on diverse cell types, including hepatic stellate 
cells, Kupffer cells, liver sinusoidal endothelial cells, hepato-
cytes, as well as liver-resident or infiltrating immune cells 
such as macrophages, along with CTLA-4 expressed on CD4+ 
Treg cells.17 By suppressing CD8+ T-cell activation and func-
tion, these checkpoint molecules help protect the liver from 
antigen-driven autoimmune responses in various inflamma-
tory contexts. However, due to the use of ICIs blocking these 
key modulatory pathways, immune tolerance of the liver can 
be broken, rendering it more susceptible to inflammatory 
damage triggered by drug exposure, underlying neoanti-
gens, or concurrent microbial stimuli.13

Current evidence points to a multifactorial effect in IMH 
pathogenesis, involving a complex interplay between adap-
tive and innate immunity, which ultimately disrupts hepatic 
immune tolerance. The primary mechanisms include direct 
activation of CTLs and epitope spreading, as well as indirect 
effects on T-helper cells, forkhead box P3–positive Tregs, B 
cells, the inflammatory cytokine milieu, and activation of in-
nate immunity (Fig. 1C–F).28 Firstly, ICI blockades can over-
come immune tolerance by stimulating the proliferation of 
CD8+ cytotoxic T lymphocytes, thereby inducing tumor cell 
death. This is accompanied by an alteration in their tran-
scriptional profile, leading to the upregulation of prolifera-
tive and cytotoxic genes such as interferon (IFN)-γ, gran-
zyme, and granulysin.17,26 Concurrently, epitope spreading 
refers to the diversification of the initial T-cell response 
against novel epitopes and neoantigens that differ from the 
originally targeted ones.29 In this process, lysed tumor cells 
release substantial amounts of self-antigens or neoanti-
gens into the microenvironment, where APCs capture, pro-
cess, and cross-present these antigens, thereby triggering 
a secondary immune response, leading to an immune at-
tack toward hepatocytes that share overlapping epitopes.17 
Secondly, the expansion of T-helper cells, particularly Th1 
and Th17 cells, results in an increase in pro-inflammatory 
cytokines, including interleukin (IL)-2, IFN-γ, tumor necrosis 
factor (TNF)-α, and IL-17, which can activate CTLs, natural 
killer cells, and monocyte-derived macrophages.30,31 Concur-
rently, ICI therapy can impair the suppressive function of 
Treg cells, often accompanied by reduced expression of the 
transcription factor forkhead box P3 and decreased produc-
tion of anti-inflammatory cytokines such as IL-10, IL-35, and 
TGF-β.17,32 Thirdly, B cells play a crucial role in the anti-tu-
mor immune response by engaging in crosstalk with CD8+ T 
cells, which involves co-stimulatory signaling through CD27/
CD70 interactions, and promotes CTL survival and prolifera-
tion independently of antigen presentation.33 CTLA-4 and 
PD-1 are also expressed in B cells, and their blockade by 
ICIs causes excessive activation and proliferation of B cells, 

leading to increases in CD21lo B cells, plasmablasts, and 
pro-inflammatory cytokines that correlate with the occur-
rence of irAEs and IMH.34,35 Overactivated and dysregulated 
B cells may produce antibodies targeting self-antigens (i.e., 
autoantibodies), which can potentially mediate liver damage 
by antibody-dependent mechanisms and trigger inflamma-
tion and hepatocyte injury; however, the pathophysiologi-
cal relevance of these antibodies and the precise role of B 
cells in irAEs require further investigation.36 In addition, ICIs 
promote the activation of monocytes and CD8+ T lympho-
cytes, leading to increased secretion of pro-inflammatory 
cytokines (e.g., IL-1β, IL-6, IFN-γ, IL-12p70, and TNF-α) to 
form the inflammatory microenvironment driving hepatotox-
icity.17,30,37 These cytokines, in turn, help to activate an in-
nate immune response by recruiting natural killer cells and 
macrophages, which contribute to the pathogenesis of liver 
injury. Liver biopsies from patients and mouse models reveal 
that CD8+ T cells and CCR2+ macrophages colocalize in dam-
aged areas, with their crosstalk activating the NLRP3 inflam-
masome to promote hepatocyte apoptosis.30,38 Importantly, 
macrophage activation and recruitment to the liver can occur 
independently of CD8+ T cells, highlighting the complexity 
and redundancy of the inflammatory networks driving IMH.

Risk factors associated with IMH
Although numerous risk factors influencing the incidence 
of irAEs during ICI therapy have been identified, those 
specifically associated with IMH remain incompletely un-
derstood. Studies have identified several risk factors for 
IMH onset, including patient-associated factors, tumor-
associated factors, and treatment-associated factors, pre-
sented in Table 2.20-23,39–52

Patient-associated factors
Social demographics: Several studies have explored the 
association between patient demographics—such as sex, 
age, race, and BMI—and the risk of IMH during ICI therapy. 
Female sex has emerged as a significant risk factor for the 
development of IMH. Kitagataya et al. indicated that females 
were at a greater risk of experiencing grade 3 or higher IMH 
compared to males.22 A retrospective study involving 1,096 
patients treated with ICI noted a higher prevalence of IMH in 
females (p = 0.038), but multivariable analysis was not per-
formed to confirm an independent association.39 Recently, a 
real-world cohort study over 10 years assessed risk factors 
associated with IMH in 432 patients with malignant mela-
noma or renal cancer who received ICIs, and all IMH cases 
were identified using the definitions, grading, and causality 
assessment methods validated for drug-induced liver injury 
(DILI).40 In multivariate logistic regression analysis, they 
identified female sex as an independent risk factor for IMH 
occurrence, which may be due to women being more sensi-
tive to the toxicity of anti-tumor drugs. This enhanced risk 
linked to female sex has also been further found in a recent 
meta-analysis of 9,076 patients.27 Nevertheless, whether 
this sex disparity stems from differences in tumor biology 
or the pharmacokinetics and pharmacodynamics of ICIs re-
mains unclear. Further investigation is needed to elucidate 
the complex relationship between sex and IMH development.

Age has been considered a risk factor for IMH. A meta-
analysis of 13 studies in 2022 indicated that younger age 
was more prone to any-grade and grade ≥3 IMH compared 
to older individuals.41 This was reinforced by another recent 
meta-analysis of 24 studies in 2024, demonstrating that 
younger age was significantly associated with a higher like-
lihood of IMH.42 Similarly, significant associations between 
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Table 2.  Risk factors for IMH incidence

Risk factors Higher risk of IMH Significance Reference

Patient-associated

    Social Demographics Female sex p = 0.009 Kitagaya et al.22

p = 0.021 Wolffer et al.23

p = 0.038 Miah et al.39

OR = 2.54; 95% CI 1.09–6.06; p = 0.032 Atallah et al.40

Young age WMD = −5.200; 95% CI −7.481 
to −2.919; p < 0.001

Pan et al.41

SMD = −0.18; 95% CI −0.33 
to −0.04; p = 0.012

Jiang et al.42

HR = 1.527; 95% CI 1.011–2.307; p < 0.05 Cho et al.43

OR = 1.757; 95% CI 1.126–2.743; p = 0.013 Jiang et al.44

Asian population China, HR = 4.25; Japan, HR = 
2.98; Korea, HR = 1.38

Madjar et al.45

Extreme BMI: Low 
BMI or High

WMD −2.15; 95% CI −3.92 
to −0.38; p = 0.017

Jiang et al.42

    Medical history HBV pooled OR = 2.46; 95% CI 
1.04–5.81; p = 0.039

Jiang et al.42

Seropositive HBsAg, OR = 6.30; base-
line HBV DNA levels, OR = 2.39

Lin et al.46

OR = 1.9; 95% CI 1.123–3.325; p = 0.017 Jiang et al.47

NAFLD HR = 29.34; 95% CI 3.169–271.6; p = 0.003 Sawada et al.21

High baseline AST/ALT OR = 1.03; 95% CI 1.01–1.05; p = 0.006 Atallah et al.40

OR = 2.59; 95% CI 1.35–4.96; p = 0.004 Kaneko et al.48

Low baseline ALP OR = 0.99; 95% CI 0.98–1.00; p = 0.015 Atallah et al.40

HR = 0.99; 95% CI 0.984–0.997; p = 0.007 Kawano et al.49

Tumor-associated

    Type of cancer Melanoma OR = 11.6; 95% CI 3.5–38.0; p = 0.002 Yamamoto 
et al.20

HR = 1.945; 95% CI 1.029–3.677; p = 0.041 Kawano et al.49

HCC OR = 2.1; 95% CI 1.231–3.621; p = 0.007 Jiang et al.47

OR = 7.866; 95% CI 3.417–18.108; p < 0.001 Jiang et al.44

Biliary tract carcinoma OR = 0.30; 95% CI 0.09–0.95; p = 0.040 Gao et al.50

Gastric cancer OR = 1.895; 95% CI 1.193–3.011; p = 0.007 Jiang et al.44

Drug-associated

    ICI monotherapy or  
    combined medication

Dual ICI combina-
tion therapy

OR = 10.95; 95% CI 4.04–35.60; p < 0.001 Atallah et al.40

ICI Dose: Ipilimum-
ab at 10 mg/kg

Not reported Wolchok et al.51

Prior ICI history OR = 4.491; 95% CI: 2.205–9.145; p < 0.001 Pan et al.41

pooled OR = 3.09; 95% CI: 
1.21–7.89; p = 0.009

Jiang et al.42

ICI combined with antian-
giogenic drugs or TKI

p < 0.0001 Ernst et al.52

ICI combined with other 
hepatotoxic drugs, e.g., 
acetaminophen, statins

Acetaminophen, OR = 2.139; 
statins, OR = 4.706

Cho et al.43

IMH, immune-mediated hepatotoxicity; BMI, body mass index; HBV, hepatitis B virus; NAFLD, non-alcoholic fatty liver disease; AST, aspartate aminotransferase; ALT, 
alanine aminotransferase; ALP, alkaline phosphatase; HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitor; TKI, tyrosine kinase inhibitor; OR, odds ratio; 
HR, hazard ratio; 95% CI, 95% confidence interval; WMD, weighted mean difference; SMD, standardized mean difference.
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younger age and IMH occurrence have also been identified in 
two retrospective cohort studies of 194 and 744 patients.43,44 
This phenomenon may be attributed to the enhanced func-
tional response of the innate and adaptive immune system 
due to increased T-cell activation in younger patients, which 
corresponds with the mechanism of IMH development.

Asian ethnicity has also been recognized as a potential risk 
factor for IMH development. The higher incidence of IMH has 
been seen in Asian patients, with approximately 6% in Japa-
nese patients and up to 18% in Chinese patients, highlight-
ing hepatotoxicity as a critical concern in these populations, 
especially in China.53 A meta-analysis of 10,344 patients 
across 15 clinical trials with atezolizumab identified that pa-
tients from Asian countries, such as China, Japan, and Korea, 
have a notably higher risk of IMH compared to non-Asian 
patients.45 This may be attributed to the higher proportion 
of hepatitis B virus infections in Asian patients, but further 
research is needed to obtain a definitive conclusion.

Extreme BMI levels, specifically underweight and obesity, 
have also been shown to be associated with a higher risk of 
liver damage. A pooled analysis of data from 15 clinical trials, 
involving 5,123 patients treated with PD-(L)1 inhibitors for 
various solid tumors, demonstrated that patients with BMI ≥ 
30 kg/m2 were at an increased risk of irAEs in comparison to 
those with normal BMI.54 A longitudinal cohort study of 863 
pan-cancer patients constructed predictive models for accu-
rately identifying patients at high risk of acute ICI-related 
hepatotoxicity within one month of initiating ICI treatment, 
with the model indicating an enhanced likelihood of IMH in 
patients with BMI ≥ 30 kg/m2, suggesting higher BMI may 
prolong exposure to ICIs and increase the risk of IMH oc-
currence.55 Interestingly, a recent meta-analysis of 24 stud-
ies identified a significant correlation between lower BMI 
(<18.5 kg/m2) and the risk of IMH in patients treated with 
ICIs, which may be attributed to the fact that underweight 
patients are often diagnosed at the advanced stage of can-
cer, rendering them more susceptible to adverse drug reac-
tions.42 However, the exact mechanism linking BMI to IMH 
remains unclear. It could be hypothesized that high or low 
BMI may alter drug pharmacokinetics, affecting absorption, 
distribution, metabolism, and excretion, thereby increasing 
susceptibility to severe liver injury.56

Chronic liver diseases: In patients with chronic liver dis-
ease, studies suggest a higher incidence of developing IMH 
compared with those without liver disease.57 Hepatitis B virus 
(HBV) infection, in particular, may influence both the efficacy 
and liver safety of ICI therapy. For instance, a pooled analysis 
in 2024 indicated that the risk of IMH after ICI treatment was 
notably higher in cancer patients with chronic HBV (pooled 
OR: 2.46; 95% CI: 1.04 to 5.81; n = 7 studies).42 In a ret-
rospective study, Lin et al. further evaluated hepatotoxicity 
in 301 cancer patients who were hepatitis B core antibody 
positive (regardless of hepatitis B surface antigen status) and 
received PD-1 inhibitors, revealing that seropositive hepatitis 
B surface antigen and detectable baseline HBV DNA levels 
were linked to an increased risk of any-grade IMH, while pro-
phylactic antiviral therapy reduced the incidence of grade 3/4 
IMH.46 Similarly, in a study involving 1,175 patients treated 
with PD-(L)1 inhibitors, Jiang et al. explored risk factors for 
ICI-related hepatotoxicity and reported that chronic HBV in-
fection was associated with a 1.9-fold increase in the risk of 
IMH (95% CI, 1.123–3.325).47 Additionally, HBV reactiva-
tion was an important risk consideration in the application of 
immunotherapy in patients with HBV infection. It has been 
observed that reactivation risk is 11–30% for patients who 
are positive for HBV surface antigen receiving ICI therapy 
without prophylaxis.58,59 These findings indicate that cancer 

patients with chronic HBV infection are at higher risk for de-
veloping IMH after receiving ICI therapy, and therefore, HBV 
serology should be assessed before initiating ICI treatment. 
For individuals with chronic HBV infection, close monitoring 
of ALT/AST and HBV DNA levels is recommended throughout 
the immunotherapy course, along with appropriate consid-
eration of preemptive antiviral medication.

Other chronic liver conditions, such as NAFLD and alco-
hol-related liver disease, may also elevate IMH risk. A retro-
spective analysis of 135 patients treated with PD-1 inhibitors 
revealed that patients with NAFLD were significantly associ-
ated with an increased risk of IMH compared to those without 
chronic liver conditions (HR = 29.34, p = 0.003).21 Abnormal 
liver function prior to ICI treatment seems to increase the 
risk of IMH. Baseline elevations in serum ALT or AST levels 
were associated with an increased risk of IMH in two inde-
pendent cohorts of 432 and 571 patients.40,48 Meta-analyses 
have demonstrated a significant correlation between higher 
baseline AST levels and any-grade IMH.41 Interestingly, a low 
baseline serum ALP level has also been shown to contribute 
to IMH development, although the mechanism for this is un-
clear.40,49

Although pre-existing autoimmune diseases are presumed 
to elevate the risk of irAEs during ICI treatment, the spe-
cific risk of IMH in this population remains inadequately in-
vestigated. Evidence from a small multicenter cohort study 
of 22 patients with mixed hepatic autoimmune disease who 
received PD-1/PD-L1 inhibitors reported no excess toxicity 
signal.60 Furthermore, a recent systematic review of 699 pa-
tients with advanced HCC found that the incidence of ICI-
related adverse events was comparable between those with 
Child-Pugh A and Child-Pugh B cirrhosis.61 Therefore, these 
findings suggest that autoimmune liver disease should not 
be regarded as a contraindication for ICI treatment in clinical 
practice.

Tumor-associated factors
The type of cancer is a significant determinant of the risk of 
developing IMH during ICI therapy. Melanoma has been iden-
tified as a risk factor for IMH. A pooled analysis of 17 clinical 
trials involving over 20,000 cancer patients treated with ICIs 
demonstrated a higher risk of IMH in melanoma patients rel-
ative to those with other malignancies.62 Similarly, a signifi-
cant correlation between IMH and malignant melanoma has 
been confirmed in two independent retrospective studies of 
250 and 1,086 patients.20,49 This elevated risk in melanoma 
may be attributed to the frequent use of combination ICI 
therapy (e.g., anti-CTLA-4 plus anti-PD-1) and the disease’s 
propensity for liver metastasis, resulting in liver injury.

HCC appears to be associated with a higher risk of IMH. 
Although a meta-analysis of 117 trials published in 2021 re-
ported significantly higher rates of all-grade and ≥ grade 3 
elevations in ALT, AST, bilirubin, and hepatobiliary disorders 
in patients with HCC versus other cancer types (p < 0.001), 
this difference was not observed for ICI-related hepatitis.63 
Recently, a two-cohort study in 2024 revealed a substantially 
higher exposure-adjusted incidence of any-grade IMH in pa-
tients with HCC (n = 375) than in patients with other solid 
organ malignancies (n = 459), with rates of 11.5% (22.1 per 
100 patient-years) and 2.6% (2.1 per 100 patient-years), 
respectively.64 IMH events also occurred earlier in the HCC 
cohort compared to the other tumor cohort, with a median 
time to any-grade IMH of 1.4 months (range, 0.1–25.5) ver-
sus 4.7 months (range, 0.9–12.8). This strong association 
has been consistently corroborated by two recent large retro-
spective studies of 1,175 and 744 patients, which confirmed 
HCC as an independent risk factor for IMH.44,47 The discrep-
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ancy arises from the fact that earlier meta-analyses evalu-
ated hepatotoxicity in HCC patients based on liver function 
indicators such as AST and ALT, with significant variation or 
heterogeneity in the definition, type, and terms of reported 
hepatotoxicity across trials, which may have led to the lack 
of observed significant differences in IMH between HCC and 
other solid tumors. In contrast, subsequent real-world stud-
ies specifically focused on IMH by utilizing diagnostic grad-
ing systems for DILI and the Roussel-Uclaf causality assess-
ment, thereby enhancing the representativeness of their 
findings.44,47 Moreover, the elevated risk of IMH in HCC may 
be attributed to the presence of antigens shared between 
HCC and normal hepatocytes. These shared antigens are 
captured by hepatic APCs, including Kupffer cells and liver 
sinusoidal endothelial cells, processed, and subsequently 
presented to CD8+ T cells. This can lead to the activation 
and expansion of T-cell clones that recognize self-antigens 
expressed on hepatocytes, thereby promoting immune at-
tacks against normal hepatic tissue and resulting in liver in-
jury. Hence, vigilance in monitoring liver function is strongly 
recommended before and during ICI treatment in patients 
with HCC.

Furthermore, emerging risk signals have been reported for 
other cancers. For instance, Gao et al. analyzed IMH incidence 
in patients during ICI therapy, finding that biliary tract cancer 
(BTC) had a higher IMH incidence than gastric cancer (GC), 
and identifying BTC as a high-risk factor for grade ≥2 IMH.50 
It was speculated that concomitant biliary obstruction and 
impaired baseline liver function in BTC patients may heighten 
their susceptibility to IMH. Meanwhile, another retrospective 
cohort study involving 744 individuals receiving PD-1/PD-L1 
inhibitors indicated that GC was an independent risk factor 
for IMH, which could be driven by divergent tumor–immune 
interactions, thereby affecting susceptibility to IMH.44 There-
fore, enhanced liver function surveillance is warranted during 
immunotherapy in these populations. However, current evi-
dence linking BTC or GC to IMH risk remains preliminary and 
requires validation in larger population cohorts, as well as 
further investigation into the underlying mechanisms.

The role of liver metastases as a risk factor for IMH re-
mains controversial. For example, a recent meta-analysis 
identified liver metastases as a significant independent risk 
factor for IMH (OR 1.80, 95% CI 1.47–2.20; p < 0.000).42 
Conversely, other retrospective studies and another meta-
analysis have failed to confirm this association.39–41 This dis-
crepancy may stem from significant heterogeneity in study 
populations, liver metastatic burden, ICI regimens, and the 
confounding effects of prior hepatotoxic treatments.

Drug-associated factors
The type, treatment regimen, and dosage of ICIs: The 
incidence of IMH varies depending on the type, treatment 
regimen (monotherapy or combination), and dosage of ICIs. 
The specific ICI type plays a crucial role in determining IMH 
risk. Clinical trial data reveal that the incidence of any-grade 
hepatic-related AEs ranges from 0.5–24.4% for anti-CTLA-4 
monotherapy, compared to 0.3–14.1% for anti-PD-1 and 
0.29–9.2% for anti-PD-L1 monotherapy.65 Additionally, there 
was a higher incidence of grade 3/4 IMH in patients receiv-
ing anti-CTLA-4 therapy (0.5–12.2%) or anti-PD-L1 (0.3–
10.6%) compared with anti-PD-1 (0.3–1.8%). This is further 
supported by a meta-analysis from Wang et al., which con-
firmed that both CTLA-4 (OR: 5.01, p < 0.00001) and PD-1 
inhibitors (OR: 1.94, p < 0.00001) significantly increase 
IMH risk compared to control groups, with CTLA-4 inhibitors 
conferring a substantially higher risk.62 Furthermore, dual 
ICI combination therapy, specifically anti-CTLA-4 and anti-

PD-1, has been associated with a higher risk of all-grade and 
grade 3/4 IMH compared to monotherapy in extensive re-
search.11,20,39–42 For example, two meta-analyses conducted 
in 2022 and 2024, respectively, have consistently confirmed 
that the combination of dual ICIs was significantly associated 
with an increased risk of any-grade IMH.41,42 Therefore, it is 
essential to be vigilant about liver function abnormalities and 
closely monitor hepatic irAEs in patients receiving CTLA-4 in-
hibitors or combined dual ICI treatment.

The dosage of ICIs, particularly anti-CTLA-4 agents, is a 
critical determinant of IMH risk. A large randomized, dou-
ble-blind, multicenter study by Wolchok et al. established a 
clear dose-dependent effect for ipilimumab in patients with 
advanced melanoma, with severe IMH being more frequent 
at 10 mg/kg than at 3 mg/kg (30% vs. 0%).51 This pat-
tern has been consistently outlined in subsequent reviews, 
which demonstrated that patients receiving a higher dose of 
ipilimumab at 10 mg/kg had a higher risk of any-grade and 
severe grade 3/4 IMH compared with the standard dose of 3 
mg/kg.65 In contrast, the incidence of IMH does not appear 
to correlate with the dosage of anti-PD-1 or anti-PD-L1 ther-
apies. Moreover, prior ICI treatment was also an independent 
risk factor for IMH in several studies, which may be due to 
the cumulative effects of ICIs.41,42

Combination with other drugs: In recent years, ICIs 
have been increasingly used in combination with chemother-
apy or targeted therapy to enhance antitumor efficacy. How-
ever, these regimens can lead to excessive hepatocyte de-
struction, thereby increasing the risk of IMH. A meta-analysis 
of 11 clinical trials including 7,086 patients demonstrated 
that combining ICIs with chemotherapy had a significantly 
higher risk of all-grade hepatic AEs than ICI monotherapy.66 
Similarly, the concurrent use of ICIs and targeted agents 
also elevates hepatotoxicity risk. In the CheckMate 016 
study, Amin et al. observed an elevated risk of all-grade 
and grade 3 hepatotoxicity in renal cell carcinoma patients 
treated with nivolumab combined with sunitinib (39.4%, 
18.2%) or pazopanib (25%, 20%).67 Schoenfeld et al. fur-
ther identified that among 126 EGFR-mutant NSCLC patients 
treated with PD-(L)1 blockade and EGFR-tyrosine kinase in-
hibitors, osimertinib was associated with severe hepatotox-
icity, particularly in those with recent prior ICI exposure.68 
Recently, a similar pattern was found with the KRAS inhibi-
tor sotorasib, which exhibits minimal direct hepatotoxicity, 
leading to high rates of hepatotoxicity in patients with prior 
exposure to anti-PD-1 treatments.52 The exact mechanisms 
underlying hepatotoxicity from combining chemotherapy or 
targeted drugs with ICIs remain unclear, but may involve 
disruptions to hepatic metabolic processes or unrecognized 
immunomodulatory effects.

Importantly, even concomitant use of directly hepatotox-
ic medications may act as cofactors for IMH. A retrospec-
tive two-center study found that acetaminophen and statins 
were independent risk factors in the development of IMH, 
with acetaminophen associated with a 2.1-fold increased risk 
of all-grade IMH and statins linked to a 4.7-fold increase in 
the risk of grade 3 or higher IMH.43 Collectively, these find-
ings highlight that combination strategies and sequential 
treatments involving ICIs can predispose patients to IMH, 
necessitating vigilant monitoring of liver function and care-
ful assessment of concomitant medications throughout the 
treatment course.

Predictive biomarkers for IMH
While the risk factors outlined above provide a clinical foun-
dation for identifying high-risk populations susceptible to 
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IMH, they often lack the sensitivity and specificity required 
for individualized risk prediction. To advance toward person-
alized immunotherapy management, there is an urgent need 
for reliable biomarkers capable of accurately forecasting IMH 
prior to its clinical onset. The development of such biomark-
ers would facilitate earlier detection, enable timely interven-
tion, and ultimately enhance both the safety and efficacy of 
ICI therapy.

The current diagnosis of IMH primarily relies on a combi-
nation of clinical presentation, temporal association with ICI 
administration, abnormal liver function tests, and exclusion 
of other potential causes.18,19 Liver biopsy, while considered 
the diagnostic gold standard, is invasive, prone to sampling 
variability, and unsuitable for repeated assessments. There-
fore, the development of sensitive, specific, and minimally 
invasive biomarkers is of paramount importance. While sev-
eral studies have explored potential biomarkers for pre-
dicting irAEs during ICI treatment, this section focuses on 
synthesizing the current evidence on promising biomarkers 
specifically associated with IMH, including circulating blood 
cell profiles, autoantibodies, cytokines, genetic and human 
leukocyte antigen (HLA) markers, and the gut microbiome, 
as illustrated in Figure 2.

Circulating blood cell-based biomarkers
Blood cell counts and ratios are attractive biomarkers due 
to their routine availability, low cost, and straightforward 
interpretation. While evidence suggests that some cellular 
predictors, including monocyte and eosinophil counts, lym-
phocytes, white blood cell (WBC) counts, neutrophil-to-lym-
phocyte ratio (NLR), and platelet-to-lymphocyte ratio, have 
emerged as potential biomarkers for IMH,19,23,25,38,50,65 their 

predictive value for IMH remains inconsistent across studies, 
as shown in Table 3.23,30,39,40,45,49,69–76

Studies evaluating pre-treatment cellular counts have 
yielded divergent results. A prospective study in 95 mela-
noma patients identified a higher absolute monocyte count 
at ICI initiation as significantly increasing IMH risk, with no 
correlation found for neutrophil, lymphocyte, or eosinophil 
counts.23 In contrast, a larger retrospective analysis of 533 
patients treated with ICIs for various malignancies estab-
lished a baseline eosinophil count ≥130/µL (HR = 3.01 for 
<130; p = 0.012) as an independent risk factor for grade 
≥2 IMH.69 Another study of 1,086 patients further reported 
a significant association between higher baseline lymphocyte 
counts and IMH, particularly in hepatocellular-injury-type 
cases.49 These discrepancies likely arise from differences in 
population characteristics, study design, and methodology. 
Variations in cancer types, for instance, the distinct tumor 
immune microenvironment in melanoma compared to other 
solid tumors, may alter baseline immune profiles and their 
interaction with ICIs. Inconsistent diagnostic criteria and 
grading for IMH, along with variable definitions of “elevated” 
cell counts, hinder direct comparison of effect estimates. 
Furthermore, these studies relied solely on pre-treatment 
baseline counts, ignoring the potential predictive value of 
on-treatment dynamic changes in immune cells. This under-
scores that single baseline cell counts are unlikely to serve as 
reliable biomarkers for IMH prediction.

The predictive utility of baseline cell ratios, particularly the 
NLR, has been studied with conflicting conclusions. A meta-
analysis of 1,096 patients on ICIs revealed that low NLR (<3) 
(OR = 2.63, 95% CI 1.63 to 4.26, p < 0.001) was significant-
ly linked to any-grade irAEs, including IMH.77 This association 

Fig. 2.  The potential biomarkers of ICI-mediated hepatotoxicity. The biomarkers of IMH include blood cells, serum proteins, autoantibodies, cytokines, genetic 
profiles, and the gut microbiome. Created with Figdraw 2.0. WBC, white blood cell count; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; 
CRP, C-reactive protein; AFP, alpha-fetoprotein; ALB, albumin; ANA, antinuclear antibodies; TPOAb, thyroid peroxidase antibodies; IL, interleukin; IFN-γ, interferon-
gamma; TNF-α, tumor necrosis factor-α; CXCL, C-X-C motif chemokine ligand; CCL, C-C motif chemokine ligand; EGF, epidermal growth factor; FGF, fibroblast growth 
factor; SNPs, single nucleotide polymorphisms; EDIL3, epidermal growth factor-like repeats and discoidin I-like domains 3; SEMA5A, semaphorin 5A; SMAD3, SMAD 
family member 3; GABRP, gamma-aminobutyric acid type A receptor subunit Pi; PACRG, parkin co-regulated gene protein; RGMA, repulsive guidance molecule BMP 
co-receptor A; SLCO1B1, solute carrier organic anion transporter family member 1B1; TNFRSF14, TNF receptor superfamily member 14; VEGFB, vascular endothelial 
growth factor B; HLA, human leukocyte antigen.
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between lower baseline NLR and IMH development was also 
observed in two larger retrospective studies, though multi-
variable analysis was not performed or did not establish NLR 
as an independent predictor.39,40 Conversely, studies focused 
on HCC populations consistently reported opposite findings. 
A multicenter study by Tada et al. indicated that higher base-
line NLR (≥3.0) was associated with an increased risk of any-
grade and grade ≥3 IMH in patients with unresectable HCC 
treated with atezolizumab plus bevacizumab.70 Similarly, an-
other large meta-analysis of 11,491 cancer patients found 
that high NLR (>5) was specifically correlated with a higher 
incidence of IMH.71 This discrepancy may stem from consti-
tutively elevated baseline NLR in HCC patients with chronic 
liver inflammation and cirrhosis, the lack of a standardized 
NLR cutoff value, and differences in ICI regimens, which may 
fundamentally alter the immunological context and subse-
quent irAE profiles.

Beyond baseline values, on-treatment hematological dy-
namics may provide crucial predictive insights. Haraguchi 
et al. compared lymphocyte counts before treatment and at 
the onset of irAEs, reporting a markedly lower percentage 
reduction in lymphocyte counts from baseline to irAE onset 
in patients with grade 3 IMH, coinciding with a significant 
rise in NLR.72 This suggests that dynamic changes in cellular 
biomarkers better reflect evolving immune dysregulation. A 
retrospective cohort of 274 NSCLC patients receiving ICIs 
demonstrated that low baseline WBC (≤11.0 × 109/L) (p < 
0.001) and high albumin (≥35 g/L) (p < 0.001) were inde-
pendent predictors for IMH development, and elevated WBC 
(p = 0.003) and platelet-to-lymphocyte ratio (p = 0.017) 
were associated with grade 3/4 IMH compared to those with 
grade 1/2 events.73 This indicates that although lower base-
line inflammatory status may predispose to IMH, severe 
cases are characterized by exaggerated post-treatment im-
mune activation. Therefore, it is imperative to observe the 
dynamics of these markers for IMH development in future 
prospective research.

T and B lymphocyte subsets have emerged as potential 
biomarkers for IMH severity. In a retrospective study of 67 
HCC patients treated with ICIs combined with tyrosine ki-
nase inhibitors, Yu et al. found that the baseline levels of 
lymphocyte subsets did not differ between AE and non-AE 
groups; however, upon irAE onset, CD4+ T lymphocyte, 
CD8+ T lymphocyte, and B lymphocyte counts decreased (p 
< 0.05), and the decrease in CD4+ T and B lymphocyte lev-
els was significantly greater in patients with grade 3/4 IMH 
compared to those with milder events (p < 0.05).74 A small 
cohort study by Gudd et al. reported that IMH patients ex-
hibited activated peripheral monocytes and an enhanced ef-
fector phenotype of CD8+ T cells.30 Another two-cohort study 
of melanoma patients receiving PD-1 blocking monotherapy 
or dual ICI therapy noted an increased frequency of EMRA 
CD8+ T cells before and after dual ICI initiation, as well as a 
rise in Ki67+CD8+ T cells post-treatment, which could predict 
severe irAEs, including IMH.75 Additionally, early expansion 
of Ki-67+ Treg cells was significantly correlated with IMH risk 
in melanoma patients.76

In summary, circulating blood cells may represent ac-
cessible tools for IMH prediction, but their implementation 
requires consideration of tumor type, baseline liver condi-
tion, and treatment regimen. The transition from baseline 
to dynamic on-treatment changes of these markers offers 
a promising direction for IMH. Future research should focus 
on standardizing measurements, validating findings in large 
prospective cohorts, and integrating these cellular biomark-
ers into multi-factor prediction models to optimize their clini-
cal utility in managing IMH.

Serum proteins
Beyond cellular biomarkers, some serum proteins have 
emerged as biomarkers for IMH, offering insights into the 
underlying inflammatory processes and tissue damage. C-
reactive protein (CRP), an acute-phase protein, has been 
found to correlate with the risk of IMH. A retrospective study 
revealed that levels of CRP were significantly higher in pa-
tients experiencing grade 3/4 IMH upon irAE onset, with CRP 
≥ 8.2 mg/L identified as a potential independent predictor for 
IMH development; when patients recovered, elevated levels 
of CRP returned to baseline.74 Alpha-fetoprotein (AFP), tra-
ditionally a tumor marker, has also been utilized to evaluate 
liver damage associated with ICIs. A multicenter retrospec-
tive study examined the CRAFITY score, a combination of 
CRP and AFP, in HCC patients treated with atezolizumab and 
bevacizumab.78 The scoring system assigned 0 points for AFP 
<100 ng/mL and CRP <10 mg/L, 1 point for either AFP ≥ 100 
ng/mL or CRP ≥ 10 mg/L, and 2 points for both AFP ≥ 100 
ng/mL and CRP ≥ 10 mg/L. Patients with a CRAFITY score of 
2 had a significantly higher incidence of grade ≥3 IMH com-
pared to those with scores of 0 or 1. Additionally, a recent 
retrospective study reported that low serum albumin, indica-
tive of systemic inflammation, was also linked to higher IMH 
incidence.79 Reduced drug binding to plasma proteins due to 
lower albumin levels leads to slower drug elimination and a 
longer half-life, consequently increasing the body’s exposure 
to toxicity.

However, these serum proteins, particularly CRP and al-
bumin, are susceptible to interference from non-IMH fac-
tors, reducing their specificity for IMH prediction. Future 
large-scale, multicenter prospective studies are warranted to 
validate the predictive value of these markers across vari-
ous cancer types and ICI regimens. Moreover, exploring their 
dynamic changes in IMH and integrating them with other bio-
markers could improve predictive accuracy.

Autoantibodies
Autoantibodies represent one of the most extensively inves-
tigated predictive biomarkers for irAEs. Pre-existing autoan-
tibodies, including antinuclear antibodies (ANA), rheumatoid 
factor, and antithyroid antibodies, have been associated with 
increased incidence and severity of organ-specific irAEs fol-
lowing ICI treatment.80,81 This has prompted investigation 
into their potential role as biomarkers for predicting or diag-
nosing IMH.

Several studies demonstrate correlations between base-
line autoantibody profiles and subsequent IMH development. 
A retrospective study of 252 NSCLC patients identified ANA 
positivity as a significant predictor for IMH.82 Notably, the 
predictive strength varied substantially between different ICI 
agents, with a markedly higher odds ratio observed for pem-
brolizumab (OR = 7.834) than for nivolumab (OR = 2.133). 
This suggests that the predictive value of autoantibodies 
may be significantly influenced by the specific ICI regimen. 
Similarly, Ghosh et al. reported differential ANA positivity 
rates between IMH subtypes, with 18% (15/85) in hepatitis-
pattern injury and 42% (5/12) in cholangitic-pattern injury, 
suggesting potential phenotypic variation in autoantibody as-
sociations.83 The spectrum of relevant autoantibodies may 
also extend beyond classical targets, as evidenced by Zheng 
et al., who identified thyroid peroxidase antibodies as a 
prognostic biomarker for liver injury in patients treated with 
sintilimab.79 The underlying mechanisms linking these anti-
bodies to IMH remain unclear. One hypothesis is that PD-1 
expression is regulated through both T cell-independent 
and T cell-dependent pathways, resulting in high levels on 
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activated B cells, facilitating autoantibody production upon 
PD-1/PD-L1 blockade, thereby contributing to an increased 
incidence of IMH.

Conversely, some studies have failed to demonstrate 
significant associations between liver-specific autoantibod-
ies and IMH development.84 A prospective cohort study of 
131 patients specifically found no correlation between IMH 
development and various autoantibodies, including ANA, 
anti-smooth muscle antibody, anti-mitochondrial antibody, 
and anti-liver-kidney microsomal antibodies, suggesting that 
liver autoantibodies may not serve as reliable predictors for 
IMH.85 This further implies that patients with pre-existing 
liver autoantibodies do not exhibit an elevated risk of IMH 
during ICI therapy.

Overall, evidence on autoantibodies predicting IMH risk is 
inconsistent and limited, making them seem unreliable as 
predictors for IMH when used alone. Future research should 
prioritize the validation of defined autoantibody panels in 
large prospective cohorts and explore their integration with 
other biomarker classes to develop composite risk scores.

Cytokines
Cytokines, as central mediators of immune activation and in-
flammation, have emerged as promising biomarkers for pre-
dicting irAEs.86 Given that the pathogenesis of IMH is close-
ly related to T cell activation and inflammatory cytokines, 
changes in cytokine levels may serve as a valuable tool for 
IMH prediction.

Several pro-inflammatory cytokines have been implicated 
in IMH development. Among these, the IL-1 family, partic-
ularly IL-1β, acts as a central driver of liver inflammation 
by regulating networks of pro-inflammatory cytokine and 
immune-regulatory gene expression.87 Elevated IL-1β RNA 
expression has been observed in patients with grade ≥3 IMH 
compared to those without irAEs, underscoring its potential 
as a susceptibility biomarker for IMH occurrence.88 Similarly, 
IL-6, another pivotal cytokine, demonstrates significant asso-
ciations with organ-specific irAEs, including IMH. While base-
line IL-6 levels did not differ significantly between irAE and 
non-irAE groups, a marked rise in IL-6 was observed upon 
irAE onset. Specifically, HCC patients experiencing grade 3/4 
IMH exhibited a more pronounced increase in IL-6 compared 
to those with grade 1/2 AEs, and IL-6 levels subsequently 
returned to baseline following resolution of hepatitis.74 An-
other small cohort also found that IL-6 levels after irAEs were 
significantly higher compared with before.89 This suggests 
that IL-6 may be a more reliable marker of active, severe 
inflammation than a baseline predictor, warranting further 
validation in large-scale cohorts. Furthermore, IL-23, a key 
regulator of Th17 cell differentiation, has also been linked to 
severe irAEs, and its blockade ameliorates liver inflammation 
in preclinical models, positioning it as a compelling IMH bio-
marker and therapeutic target.90

Currently, the limitations of single-cytokine measure-
ments have prompted a shift towards combining multiple 
cytokine and chemokine panels, which could enhance the ac-
curacy of irAE prediction. Lim et al. investigated circulating 
cytokines in 98 patients with melanoma using the 65-plex 
cytokine discovery assay, identifying that elevated baseline 
and early-treatment levels of 11 cytokines (G-CSF, GM-CSF, 
Fractalkine, FGF-2, IFN-α2, IL-12p70, IL-1α, IL-1β, IL-1RA, 
IL-2, and IL-13) were significantly associated with severe 
irAEs, including IMH.91 The CYTOX score, which integrated 
these 11 cytokines, could help in the early management of 
severe, potentially life-threatening immune-related toxicity. 
In a separate report, Moi et al. reported high baseline lev-
els of pro-inflammatory cytokines (e.g., IFN-γ, IL-6, CXCL9, 

CXCL10, CXCL11, CXCL13) and anti-inflammatory cytokines 
(e.g., IL-10, IL-1RA) in three consecutive patients with IMH, 
although these findings require validation in larger cohorts.92 
Recently, Farooqi et al. also noted that high baseline CXCL10 
and increased TNF-α during treatment were linked to IMH 
risk, while elevated CCL27 levels at baseline and during 
treatment may reduce IMH risk, suggesting a protective role, 
further illustrating the complexity of the cytokine network.93

The timing of biomarker measurement is paramount, as 
cytokine levels can exhibit significant fluctuations during 
treatment. Zeng et al. analyzed plasma cytokine profiles 
at three key time points: baseline, IMH onset (IMH-D1), 
and seven days post-onset (IMH-D7).88 They found that 12 
pro-inflammatory cytokines, namely CCL11, CCL4, CXCL1, 
CXCL10, CXCL12, IFN-γ, IL-10RA, IL-18, IL-1α, IL-1β, IL-7, 
and IL-8, were significantly lower at baseline in the ≥G3 IMH 
group than in the non-irAE group. Interestingly, higher IL-
1α levels at IMH onset were associated with resolution of 
grade ≥3 IMH in the subgroup, while elevated levels of nine 
cytokines (including CCL11, CCL3, CCL5, CXCL1, CXCL12, 
IL-10RA, IL-18, IL-7, and TNF-α) at IMH-D7 were linked to 
IMH-related mortality.88 Recently, another prospective study 
of 134 solid tumor patients receiving PD-(L)1 inhibitors iden-
tified that the highest levels of CXCL9, CXCL10, CXCL11, 
IL-18, and IL-10 were observed at the onset of IMH, with 
no baseline differences between groups.94 Notably, cytokine 
levels tended to be higher in severe IMH compared to mild 
irAEs and those without irAEs; however, this difference did 
not reach statistical significance due to an insufficient sample 
size. This underscores that cytokine profiles are not static; 
longitudinal monitoring is essential to capture their predictive 
and prognostic value. Future studies should employ stand-
ardized detection methods to evaluate dynamic changes in 
multiple cytokines across different time points in large-scale 
populations, thereby identifying which cytokines are most 
suitable for predicting the occurrence of IMH.

Other cytokines/chemokines may also predict IMH risk. For 
instance, elevated serum levels of soluble CD163 (sCD163) 
have been observed in IMH patients, suggesting the CD163/
sCD163 axis as a potential biomarker.30 Additionally, mol-
ecules implicated in DILI, such as IL-33, growth factors (EGF, 
HGF), metalloproteinases, tissue inhibitors of metalloprotein-
ases, and damage-associated molecular patterns, may hold 
potential as IMH biomarkers given the pathological similari-
ties between these conditions.95 Large prospective cohorts 
will be needed to develop and validate multi-omics models 
that combine cytokine profiles with clinical and immunophe-
notypic data to improve IMH prediction and mechanistic in-
sight.

Genetic and HLA markers
Genetic predisposition, particularly single-nucleotide poly-
morphisms (SNPs) in immune-associated genes and HLA 
profiles, is increasingly recognized as a determinant of IMH. 
Recent research has highlighted the role of SNPs and HLA in 
predicting IMH occurrence, as shown in Table 4.23,85,96–101

A retrospective study of 322 nivolumab-treated patients 
assessed the association with irAEs for seven specific SNPs in 
PDCD1, PTPN11, ZAP70, and IFNG genes via TaqMan allelic 
discrimination assays.96 Specifically, PTPN11 333–223A>G 
was associated with an increased risk of IMH in the explora-
tion cohort; however, this association was not replicated in a 
validation cohort, highlighting the challenges of population-
specific genetic effects and the necessity for large-scale vali-
dation. The study by Fontana et al. selected candidate gene 
variants associated with IMH risk in 57 high-causality IMH 
cases from the Drug-Induced Liver Injury Network.97 They 
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investigated 25 candidate genes and target SNPs in 5 can-
didate genes using an Illumina MiSeq platform, finding that 
rs1862167 in EDIL3, rs35719165 in SEMA5A, rs73800947 in 
GABRP, rs34234515 in SLCO1B1, and rs12913535 in SMAD3 
were strongly linked to IMH compared to population controls. 
Recently, Rodríguez-Piñas et al. conducted a multi-center 
study to explore tumor SNPs associated with the risk of IMH 
using a MassARRAY platform.98 Significant associations were 
identified between IMH risk and 4 of the 20 SNPs. Three 
SNPs— GABRP rs11743438, GABRP rs11743735, and PACRG 
rs55733913—were linked to a higher risk of IMH, whereas 
RGMA rs4778080 appeared to protect against this adverse 
event. These findings suggest that SNPs could serve as use-
ful biomarkers to predict IMH risk, requiring confirmation in 
larger patient cohorts.

Beyond SNPs, other genetic alterations, such as small se-
quence variations and copy number variations, have been ex-
plored as potential biomarkers for IMH. A prospective study 
by Wolffer et al. identified several genes, including SMAD3, 
PRDM1, IL1RN, CD274, SLCO1B1, TSHR, and FAN1, as be-
ing associated with irAEs, particularly organ-specific events.23 
Notably, copy number variations in CD274 (p = 0.043) and 
SLCO1B1 (p = 0.010) were significantly linked to hepatitis, 
further underscoring the role of genetic variations in IMH 
risk. Additionally, specific gene expression profiling has also 
emerged as a valuable tool for identifying IMH. For exam-
ple, Zeng et al. demonstrated significant upregulation of the 
IL-1β gene and other inflammation-related genes in tumor 
samples, such as HLA-C, IL-2, TNFRSF14, and VEGFRB, in pa-
tients with grade ≥3 IMH compared to those without irAEs.88

HLA profiles have been extensively linked to susceptibility 
to immune-mediated diseases and cancer.102 Evidence sug-
gests that specific HLA genotypes are associated with organ-
specific irAEs, including IMH. In a prospective cohort study 
of 131 cancer patients assessing the association between 
HLA and IMH, Purde et al. observed that two HLA alleles, 
DRB1*04:01 and the haplotype DRB1*15:01–DQB1*06:02, 
were nominally significantly associated with the risk of IMH 
development in NSCLC patients.85 However, this association 
was absent in the overall patient cohort or after correction 
for multiple comparisons, highlighting the need for valida-
tion in larger studies. Another prospective study by Wolffer 
et al. found that HLA-A class I homozygosity was significant-
ly linked to the occurrence of IMH in melanoma patients.23 
Similarly, Akturk et al. conducted a case-control study to 
evaluate the association between the presence of HLA-DR al-
leles and irAEs in advanced melanoma patients treated with 
ICIs and found that HLA-DR4 was significantly associated 
with IMH.99 Additionally, a large cohort study involving 530 
cancer patients identified several HLA types associated with 
organ-specific irAEs, including a significant link between HLA-
A*26:01 and elevated bilirubin levels.100 Recently, Titmuss et 
al. analyzed 117 patients who received ICI treatment through 
the ongoing Personalized OncoGenomics program, reporting 
that MHC class I alleles in the HLA-B27 family were associ-
ated with grade 3 IMH (p = 0.007).101 Collectively, these 
findings suggest that pre-treatment HLA profiling could help 
identify patients at risk for specific irAEs, particularly IMH, 
following ICI therapy.

However, not all studies have confirmed these asso-
ciations. For instance, Fontana et al. reported no signifi-
cant associations between the overall HLA DR4 or HLA-
DRB1*15:01–DQB1*06:02 haplotype and the occurrence of 
IMH.97 This discrepancy may be attributed to several fac-
tors, including relatively small sample sizes, heterogeneity in 
patient cohorts, divergent study methodologies, and lack of 
comprehensive genome-wide data. To clarify the role of HLA 

genotypes in IMH development, future studies should involve 
larger, well-defined cohorts of patients receiving uniform 
treatment regimens for the same tumor type. Direct com-
parisons between ICI-treated patients who develop IMH and 
those who do not will be essential to validate the potential of 
these genetic variants as predictive biomarkers.

Gut microbiome
The gut microbiome is a key regulator of immune homeosta-
sis, and its composition has emerged as a promising predic-
tor for both the efficacy and toxicity of ICIs.103 For instance, 
patients treated with ipilimumab who exhibited a microbi-
ome enriched with Faecalibacterium and Firmicutes at base-
line were found to have a higher risk of ICI-related colitis.104 
However, this specific association between the gut microbi-
ome and IMH has not yet been directly established.

Evidence from other organ systems may provide a ra-
tionale for a potential link. The gut-liver axis, for instance, 
demonstrates how intestinal microbes can influence extra-
intestinal immunity. Alterations in the gut microbiome have 
been implicated in hepatocyte injury and immune-mediated 
liver dysfunction, such as in autoimmune hepatitis.105,106 
Furthermore, specific microbes, like Veillonella (a member 
of the Firmicutes phylum), are frequently enriched in liver 
diseases and cancers.107,108 Recently, a study by Ryan et al. 
found a significant correlation between Veillonella abundance 
and the severity of ICI-related hepatotoxicity, suggesting its 
potential as a microbial biomarker for hepatic irAEs.109 This 
mechanistic insight provides a basis for the hypothesis that 
gut-derived bacterial signals, known to influence systemic 
inflammation, could also influence the development of IMH. 
Therefore, future high-quality studies are urgently needed 
to directly determine whether specific microbial markers can 
reliably assess IMH risk prior to or during ICI therapy.

Future perspectives
With the increasing use of ICIs in various cancers, IMH has 
emerged as a significant clinical challenge due to its poten-
tial impact on treatment efficacy and patient survival. This 
review synthesized current evidence on risk factors and po-
tential biomarkers for IMH prediction. While factors such as 
specific demographic characteristics, pre-existing conditions, 
particular cancer types, and combination ICI regimens have 
been associated with increased IMH risk, and various bio-
markers, including circulating blood cell counts, autoantibod-
ies, cytokines, and genetic profiles, demonstrate promise in 
predicting IMH, none of the proposed biomarkers can cur-
rently be applied in clinical practice to accurately predict its 
occurrence.

The current evidence base exhibits significant limitations 
that hinder clinical application. First, most studies are retro-
spective and suffer from substantial heterogeneity in patient 
populations, ICI regimens, and detection methods, leading to 
inconsistent findings. Second, the underlying mechanisms of 
IMH remain poorly understood, and inconsistent diagnostic 
and grading criteria for IMH across different studies hinder 
the rational selection of biomarkers. Furthermore, existing 
studies focus on single categories of biomarkers, with a lack 
of integration of multi-dimensional, cross-omics approaches, 
thereby limiting the development of robust prediction mod-
els. Crucially, while an ideal biomarker should enable both 
pre-treatment risk stratification and dynamic monitoring dur-
ing therapy, most studies to date have focused on static pre-
treatment assessment. The absence of longitudinal data lim-
its the clinical translation and predictive utility of biomarkers.

It is unlikely that a single risk factor or biomarker will be 



Journal of Clinical and Translational Hepatology 202614

Yu Z. et al: Risk factors and biomarkers for IMH

specific or sensitive enough to predict irAE development ac-
curately. Given that several mechanisms are involved in IMH, 
a combination of multiple biomarkers, such as blood cell 
counts, autoantibodies, cytokine levels, genetic markers, and 
microbiome, is essential to identify risk stratification and per-
sonalize monitoring strategies to prevent the occurrence of 
IMH. In a retrospective study, Zheng et al. developed a clini-
cal risk score to predict immune-mediated liver injury caused 
by sintilimab; multi-factor prediction models that integrate 
clinical characteristics, blood cell counts, and liver function 
tests to predict IMH have also been established.79,110 Arti-
ficial intelligence and machine learning algorithms could be 
employed to improve the accuracy of predictive models in 
this setting. Advancements in multi-omics technologies, in-
cluding genomics, transcriptomics, proteomics, and metabo-
lomics, hold promise for uncovering novel biomarkers and 
elucidating the molecular mechanisms of irAEs.111

To address these gaps, well-designed prospective studies 
in large, multi-center cohorts are imperative. Future studies 
should focus on developing and validating prediction models 
for IMH that integrate multi-omics biomarkers and compre-
hensive clinical data using artificial intelligence and machine 
learning. It is also essential to implement longitudinal moni-
toring of biomarkers from baseline through treatment, on-
set, and resolution of IMH to capture their dynamic profiles. 
Standardized protocols for biospecimen collection and uni-
form detection methods must be established to ensure data 
comparability across studies. Furthermore, stratified analy-
ses accounting for variables such as tumor type, ICI regi-
men, and baseline clinical characteristics are necessary to 
enhance model accuracy and clinical applicability. Addition-
ally, further investigation into the immunopathological mech-
anisms of IMH should be pursued to identify novel therapeu-
tic targets and strategies, which may simultaneously yield 
new predictive biomarkers. By leveraging multi-dimensional 
data through advanced technologies and validating them in 
large, prospective clinical cohorts, it will be possible to iden-
tify high-risk populations before treatment initiation, guide 
personalized monitoring strategies during therapy, and ul-
timately reduce the incidence and severity of IMH, thereby 
enhancing the safety and efficacy of cancer immunotherapy.

Conclusions
In conclusion, this review comprehensively synthesizes the 
current evidence on IMH risk, identifying established clinical 
risk factors, including female sex, young age, pre-existing 
liver disease, specific cancer types, dual ICI therapy, con-
current hepatotoxic drugs, as well as promising biomarkers 
ranging from circulating immune cells to gut microbiome pro-
files. However, no biomarker has yet been proven sufficiently 
reliable for clinical use. These findings highlight a critical 
translational gap and the insufficiency of current knowledge 
for prediction. Therefore, future research should prioritize 
large-scale, prospective, and longitudinal studies to develop 
validated, integrated multi-dimensional prediction models. 
This work is essential to enable pre-emptive risk stratification 
and improve the safety of cancer immunotherapy.
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